Posts Tagged ‘soil organic matter’

How can I improve the pasture on my farm?

Tuesday, March 11th, 2014

A complete soil test is an important first step to help restore the productivity of pastures. Most soil tests provide a breakdown of major and minor plant nutrients but many also profile the soil’s overall health, potential and fertility.

I was recently asked to visit a property in Gembrook east of Melbourne that was used to run horses. This was in February and the soil was very dry, around 3% moisture. At this level most biological activity in the soil ceases (more about this later). Now no-one expects a farm to be at its most productive during summer but its a good time to check on how well the soil and pasture is standing up to the stress of summer. Good indicators are the amount / proportion of bare ground, if there is any useable pasture left standing and the presence of weeds. Unfortunately this property showed signs of stress with little standing feed for the horses.

Horse paddock in Gembrook. A complete soil test is the first step towards re-establishing a good feed base for horses.

Horse paddock in Gembrook. A complete soil test is the first step towards re-establishing a good feed base for horses.

This is a higher rainfall area and soils are highly oxidized hence the red iron colour common in the area. On the positive side these soils have a good structure and are well aerated but they tend to be acidic and this is difficult for most plants.

Some results:

Test measured preferred comments
pH in water 5.83 6 – 7 too acidic
pH in CaCl2 5.04 5.4 – 6.4 too acidic
Bulk density 0.89 ‘light’ soil
Soil water 3.1% around 20% very dry

The soil is acidic as expected.  The bulk density value shows that the soil is lightly textured and because the soil felt soft this suggests that there may be organic materials in the soil and the soil may be well aerated. By contrast some soils in West Gippsland have a heavy consistency like butter and when dried lose their structure and become powdery.

How much organic matter was in the soil?

Test measured preferred comments
Total organic C 37184 ppm 29000 – 52000 moderate
Fresh organic C 466.5 ppm 860 – 2100 very low
Proportion fresh org C 1.23% 2.9 – 3.9% low

The soil had moderate levels of organic matter but most is ‘older’ humic type organic matter. There is not much fresh organic matter present. Overall the picture is of little recent return of plant material to the soil. Is this important? Yes, because organic matter has a significant role in making nutrients such as phosphorus and sulphur available to plants – a very important role in these types of soils. Check my previous blog entries for some results and comments for dairy farm soils.

Complete soil tests are a cost effective management tool. Tests that cover all nutrients, many of the main physical factors and organic matter levels cost around AU$150. In future blog entries I will cover more of the test results from this Gembrook soil.

Organic matter in dairy farm pasture

Tuesday, October 22nd, 2013

The benefits of organic matter in soil are well known. Organic matter improves factors including water holding capacity, nutrient holding capacity and structure. But organic matter can be made up of more longer lasting humus through partially broken down material to fresh material from plants and animals that has recently entered the soil. This fresh reactive fraction is more likely to be a major supplier of nitrogen to a pasture as it is broken down.

How much of each is likely to be present in a pasture soil? A recent study, Culman et al, 2012, has found that permanganate oxidizable carbon in soils correlates well with widely used measurements of microbial biomass and particulate organic matter. Permanganate oxidizable carbon is also a good indicator of variation in management and environmental factors.

Dairy farm pasture in West Gippland, Site 2 of the study. The paddock is elevated and the soils has a characteristic reddish-brown colour.

Dairy farm pasture in West Gippsland, Site 2 of the study. The paddock is elevated and the soils has a characteristic reddish-brown colour.

It is relatively cheap and easy to measure the reactive fraction of soil organic matter by permanganate digestion. A simplified method is outlined in detail in the Archive for March, 2012.

In a preliminary study soil was sampled at three sites on a dairy farm in West Gippsland.

Site 1: Pasture soil mid way down a slope, known to be poorly drained. Mixed pasture species including some perennial ryegrass and poorly developed white clover. pH measured at approx 5.5. The soil has a heavy texture but becomes powdery when dry.

Site 2: Elevated pasture with mixed species. Chosen for its contrast to Site 1.  More typical West Gippsland red-brown soil. Distinct crumb structure with pH around 6. This is the site in the picture.

Site 3: Another red-brown soil in an elevated position considered to have good pasture. pH approx 6. Good crumb structure.

Partially dried samples were sieved to remove roots. Two tests were carried out: digestion with 30% hydrogen peroxide for a ‘total’ organic matter measurement and, digestion with potassium permanganate for a reactive organic fraction.


Organic matter Reactive Total % reactive Approx
Site total w/w % org C ppm org C ppm org C level *
1 5.3 865 29293 2.9 low
2 7.2 1025.5 39751 2.5 moderate
3 9.5 2085.6 52014 3.9 high

* representative values can be seen by following the SOM Method link in the Archive for March, 2012  ‘A simple test  for reactive soil organic matter’.

Across the farm, levels of total and reactive organic soil matter varied from low to high. The lowest at Site 1 and the highest at Site 3. The percentage of total organic matter weight for dry weight in the soils ranges from 5.3 to 9.5.

The percentage of reactive soil organic matter was significantly higher at Site 3 (3.9% of total). However a meta-analysis of a range of figures for total and reactive soil C from the Archive for March, 2012 shows that typically the reactive component ranges from 3.8 % to 10.6 %. Therefore overall, soils on the dairy farm in this study have low or lower than expected levels of reactive soil organic matter.

This study has provided some comparative figures for soil organic matter fractions on a dairy farm. Reliability will be improved with more tests per paddock and wider testing over the farm will be useful as part of pasture and feed management on the farm. Many of the factors that determine organic matter levels in the soil can be identified like grazing, pasture, crop and fertilizer history. This information along with tests for key nutrients can help to better understand how the current situation has developed.


Culman et al, 2012, Permanganate oxidizable carbon reflects a processed fraction that is sensitive to management, 2012, Soil Science Society of America Journal.

How much organic matter is in your soil?

Friday, September 2nd, 2011

Of all the factors that can be measured in soils, organic matter (OM) is probably the most useful and critical. This test measures the fresh or labile organic matter in soil. This organic matter supplies nutrients to plants because it is the food for microorganisms which in turn release nutrients like phosphorus and nitrogen.

Some tests like high temperature degradation or acid / dichromate digestion measure total or resistant organic matter. This is important for nutrient holding capacity, water holding capacity and soil structure. These tests are slightly difficult and can be slightly dangerous – been there, done that! Peroxide digestion tends to measure labile and perhaps more resistant SOM.

Potassium permanganate (KPM) is an oxidant that is safe to use. As the KPM oxidizes the OM it loses its purple / magenta colour. In the lab I use 0.2 M KPM stock solution with an added flocculant. The sample can be weighed or measured by volume (2.5 mls). The stock solution is diluted x 10 and then shaken with the soil by hand for a short time. So the method is simple and easy to carry out.

I tested 5 soils from around my property. A good compost, vegetable garden soil, soil from an old strawberry patch, soil from a paddock where very little fertilizer or compost had been added, and sub soil from an excavation. The soil in Gembrook is mostly a highly oxidized iron based soil that has a reddish colour. The results are below.

Permanganate digestion of labile organic matter in soils
Five soils from compost (left) to subsoil (right) were extracted using potassium permanganate. Soils with high labile organic matter remove most of the purple permanganate colour.

The compost sample is on the left – very high OM, then from L – R vegetable garden, unfertilized paddock, old strawberry patch, subsoil. The big surprise was that the old strawberry patch soil had relatively high labile OM, slightly more than the vegetable garden. The subsoil (on the right) had almost no OM. The unfertilized paddock (centre) had relatively low OM.

The change in colour provides a simple way to compare the OM in samples. In the lab I used a photometer to read the absorbance of the solutions at 570 nm. This method needs a calibration curve but the end result is more accurate. The amount of carbon in the OM can be related back to the amount of KPM used up (based on a simple assumption). Therefore this method can give a reading for organic carbon in gm/kg. Then that can be converted to a value for OM (organic C is about 55% of OM). Its even possible to estimate the amount of nitrogen that could be potentially released from the OM because the C : N ratio is usually , based on soil type, between 10 : 1 and 33 : 1.

The amount of fresh OM in soils is related more directly to soil fertility factors like microbial respiration and biomass and to factors that can be linked to soil management like reduced tillage, green manures etc.

The inspiration for my exploration was Weil, Ray, et al 2003, Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use.

There are many good articles on soil organic matter available on the web including this one: Hoorman and Islam, 2010,  Understanding soil microbes and nutrient cycling. Ohio State University Agriculture and Natural Resources Fact Sheet SAG-16-10