Archive for April, 2014

Farm soil testing – acidity and phosphorus

Thursday, April 24th, 2014

In a previous blog entry, March 11 2014 I described some of the physical factors in a pasture soil in Gembrook that I had tested. The soil was very acidic with a very low proportion of fresh organic matter.

Exchangeable acidity results from prolonged leaching of good nutrients from soils. The pool is considerable larger than that represented by pH but is in balance with pH. A high exchangeable acidity usually means low pH. In this soil exchangeable acidity is very high and is creating a low pH. A low level of exchangeable acidity is normal and is always present in soils but a high level indicates a problem. The exchangeable acidity has to be at least partly overcome to raise the pH. Therefore exchangeable acidity is a good measurement on which to base calculation of lime requirement.

Exchangeable acidity (calculated by our partner lab as Lime requirement) is 4.8 meq% which is high. The exchangeable acidity determined on the same soil by Apps Labs was 0.32 meq% which by comparison to other figures is relatively low. Around 0.5 to 1 meq% is normal and acceptable (the lower the better). It looks like our lab is including aluminium in the exchangeable acidity whereas our method specifically measures the H ions.

Gembrook pasture and soil. The photo was taken in Summer and shows exposed soil and weeds.

Gembrook pasture and soil. The photo was taken in Summer and shows exposed soil and weeds.

The M3-PSR is the Mehlich Phosphorus Saturation Ratio, an environmental and soil quality test designed to show if phosphorus is likely to be leached from the soil. Conversely it will show the tendency of the soil to fix phosphorus and to make it less available to plants. A M3-PSR < 0.062 in below the agronomic minimum and shows that P uptake by plants will be poor. The result for this soil is 0.003 which indicates a strong tendency of the soil to hold phosphorus in an unavailable form.

The red Kraznozem soils around Gembrook are highly oxidized soils and the red colour comes mainly from the oxidized iron. These are similar to many of the soils found in equatorial regions including those in Africa, Asia and south America. I already expected a problem with phosphorus lockup in this soil as phosphorus binds strongly with iron and aluminium minerals at low pH. The M3-PSR mostly confirmed this.

Soil phosphorus was extracted using Mehlich 3 extractant. Mehlich 3 extractable P has been found to correlate well with a number of other indicators for more readily ‘plant available’ or potentially available phosphorus (see my previous blog entry on phosphorus in dairy farm soil for more detail). The result for phosphorus was 6.2 ppm. The ideal range is 30 – 70 ppm.  Therefore not only will this soil tend to bind up phosphorus, the overall level of plant available phosphorus is very low.

If inorganic phosphorus fertilizers are added to this soil much could be potentially lost before being used by plants. To get around this some farmers add up to twice the calculated plant phosphorus requirement. The result is that some soils have high phosphorus levels (see my previous blog entry on phosphorus in dairy farm soil). Other solutions are to use a slowly soluble form of phosphorus like rock phosphate or to create a fertilizer made up of granules of inorganic phosphorus compounds coated in compost or organic matter.